
Project Integration Ar chitecture:
Application Ar chitecture

Dr. William HenryJones
NationalAeronauticsandSpaceAdministration
JohnH. GlennResearchCenteratLewis Field

Cleveland,OH 44135
216-433-5862

William.H.Jones@grc.nasa.gov

X00.00 22 Oct 1998
X00.01 08 Dec 1998
X00.02 29 Mar 1999
X00.03 24 Aug 2000
X00.04 28 Aug 2000
X00.05 19 Sep 2000
X00.06 21 Jun 2002

Keywords:
PIA; PRICE;CORBA; ApplicationIntegration;

SemanticEncapsulation;

ABSTRACT: TheProject Integration Architecture (PIA) implementsa flexible, object-oriented,wrappingarchitecture
which encapsulatesall of theinformationassociatedwith engineeringapplications.Thearchitectureallowstheprogress
of a projectto betrackedanddocumentedin its entirety. Additionally, bybringingall of theinformationsourcesandsinks
of a projectinto a singlearchitectural space, theability to transportinformationbetweenthoseapplicationsis enabled.

1 Intr oduction

In the late 1980’s, the IntegratedCFD and Experiments
(ICE) project [1, 2] wascarriedout with the goal of pro-
viding a single, graphicaluser interface (GUI) and data
managementenvironmentfor a varietyof CFD codesand
relatedexperimentaldata. The intent of the ICE project
was to easethe difficulties of interactingwith and inter-
mingling thesedisparateinformationsources.Theproject
wasa successon a researchbasis;however, dueto various
technicallimitations (for instance,the difficulty of devel-
oping object-orientedconstructsin a non-object-oriented
language)and the loss of key personnel,it was deemed
inappropriateto advancethe effort beyond the successes
achieved to that point. Thus, a re-engineeringof the
project was initiated in 1996. The effort was first re-
namedPortable,RedesignedIntegratedCFD and Exper-
ments(PRICE)projectandthen,asthewide applicability
of theconceptscameto beappreciated,ProjectIntegration
Architecture(PIA).

Two key re-engineeringdecisionsweremade: the C lan-

guageusedby theICE projectwouldbeabandonedin favor
of thenow-availableC++ object-orientedextensionto that
languageandthe graphicaluserinterfacewould be elimi-
natedasaproductelementof theproject.Thefirst decision
wasbut amatterof circumstances;hadC++ beenavailable
to theoriginal ICE teamat projectoutset,it would almost
certainlyhave beenselectedfor use.Theseconddecision,
to remove theGUI from theprojectproductset,wastaken
only after a periodof time andreflectedtwo truths: first,
that a cross-platformGUI with the scopeof functionality
envisionedwasfarbeyondtheresourcesof thePIA project
and,second,that sucha GUI wasduplicative of otheref-
fortswithin theAgency.

During the intervening years, work has proceededand
an operationaldemonstrationof the PIA projecthasbeen
achieved. The currenteffort hasnot achieved the com-
pleterangeof functionalitydevelopedin theoriginal ICE;
however, thearchitecturaldividing line hasbeenmorethor-
oughlydefinedandadherenceto it hasbeenmorerigorous.
Portability of the architecture,not only acrossplatforms,
but to distributed object architectures,has beendemon-

1

strated.Thispathaheadis moreclearlydefined.

2 Goals

Put in simpleterms,the basicgoal of the PIA effort is to
capturein its entirety the usageof any technicalapplica-
tion in a single,useful,well-definedform. This capturing
is not limited to thesimpleoutputof theapplicationitself,
but furtherincludescoordinatinginformationandthetech-
nologist’sown insightsinto themeaningof theinformation.

The natureof a ‘technical application’ is, by project de-
sign,nebulus: it is consideredto beany computer-realized
‘thing’ which provides or generatesuseful information
abouta project. This may include geometrydefinitions
extractedfrom ComputerAided Design(CAD) programs,
geometryor otherspecificationsderivedfrom designcode
predictions,resultsof experimentalinvestigations,analysis
andsimulation,andmore.

By bringingall of theinformationof thetechnicalprocess
into onearchitecturaldesign,a numberof advantagesare
expectedto (and,it is believed,do)accrue.

1. Theinformationaboutthe information(referredto in
someconceptionsas the meta-data)is encapsulated
with theinformationitself. Informationaboutthecon-
ditionsatwhichtheinformationwasgenerated,or the
meritof theinformation,is nolongerseparatelystored
in a technologist’sunlocatablejournal.

2. A commontool setfor theuseof applicationsis pos-
sible. A singleGUI with a single look-and-feelcan
bedevisedsoasto reducethetechnologist’s learning
curve for additionalapplicationsto thatsolelyrelated
to theapplication.Thetechnologist’shabitsof explor-
ing a problemcannow bethesamefrom oneapplica-
tion to thenext.

3. Commonbrowsersandsearchenginesmaybeimple-
mentedto perusethe supplyof informationin detail
andconvert it into informationin generalfor endcon-
sumersof thatknowledge.

4. By wrappingeveryapplicationin awell-definedarch-
itecture,it is now possibleto codeinto suchapplica-
tions the knowledgeto acquireinformationautomat-
ically from otherapplications.Becauseof the archi-
tecturaldesign,suchcodedknowledgeis basedupon
the kind of informationdesired,ratherthanuponthe
applicationgeneratingthatkind of information.

5. Wrappedapplicationscoded to obtain information
basedupon its kind may then be combinedin a di-

rectedapplicationgraph to build, in effect, super-
applications. Applicationsof differing fidelities and
disciplinesmay be mixed togetheras appropriateto
theproject.

6. The building of super-applicationsenablesproject-
wide optimization and/or sensitivity analysisto be
conducted.

3 SelfRevelation

Perhapsthe key technologythat enablesthe goalsabove
is thatof self revelation,the ability of a thing to reveal to
othersits own nature.Suchacapacitycanbeimplemented
by many different techniques;however, this capacityis a
verynaturalelementof object-orientedtechnology.

Theconceptof self revelationasdiscussedin thetwo sec-
tionsbelow canbevery quickly understoodby thesimple
analogyof meetinga new personat a party. Oneof the
naturalthingsto do in sucha situationis to askwhat the
persondoes;if thatpersonanswers,for example,that she
is amedicaldoctor, anentirecoursemaybesetbasedupon
the inquisitor’s needs.If the inquisitorhasa medicalcon-
dition for which he desiresa free opinion, it may be ap-
propriateto inquirefurtherasto thedoctor’s specialty. On
theotherhand,if the inquisitorhasnot thefirst interestin
medicaltopics,it maybetimeto discretelyspill something
andhurryoff for anapkin.

To seethe importanceof this concept,considerthe anal-
ogousalternative: what if onedid not have the ability to
inquire of new peoplemet at a party? In that event one
would be eithernon-functionalasa party animal,or par-
tieswould have to be incredibly rigid in their formulation
soasto meetthepracticalbreadthof programmedexpec-
tationin theparticipants.Eitherno conversationscouldbe
permittedbecausetheability to predicttherelevancewould
beentirelylacking,or all guest-to-guestinteractionswould
have to be predeterminedandpre-scriptedso asto assure
that onetalked with othersaboutrelevant subjects.In ei-
thercase,a lackof self revelationwouldbequickly seenas
truly confining.

3.1 SelfRevelation of Kind

The revelationof kind identifiesthe essentialcharacterof
therevealingentity. In theobject-orientedimplementation
of PIA, this setsexpectationsas to the kind of informa-
tion andfunctionality a particularobjecthas: it is a free-
streamMach numberparameter, or it is an operationthat
may or may not be enabledand, if enabled,will execute

2

anddo something,or it is anapplicationoffering parame-
ters,identifications,andoperations,or it is any oneof an
almostunlimited variety of otherthings. The key feature
is that,uponfindingout its kind, preciseexpectationsasto
whatit hasandwhatit is willing to do maybeconfidently
inferred.

The revelationof kind is effectedin two ways: an inter-
rogative form anda declarative form. In the interrogative
form, a predicateof kind is posedto theobjectandeither
affirmed or denied. In the declarative form, an inquiry is
madeof the object and a simple codedvalue is returned
declaringthetypeof theobject.

Becauseof the derivational natureof object technology,
both of theserevelational forms support the conceptof
depth. That is, an object may be of a particularkind at
somederivationaldepthbut, becauseof furtherderivation,
may not appearto be of that kind on its surface. The
examinationof such layersof meaningis referredto in
the PIA nomenclatureasecdysiasticalanalysis(from the
Greekekdysis,ekdyein, to getoutof, stripoff).

3.2 SelfRevelation of Content

Therevelationof contentidentifiestheextentto which ex-
pectationsbasedupon the revelationof kind are, in fact,
fulfilled. Here,the revealedkind of an objectallows one
to expectthat it hascontentof a givennature,but thatna-
turemayyetbenebulusby design,or maybevariablein its
amount,or maybevariablein otherspecifiedways.

Considerfor exampleanapplicationobject.As will bedis-
cussedshortly, anapplicationobjectis known to haveaset
of operationsencapsulatedin operationobjects;however,
by specification,it is not known whetheror not thereac-
tually areany operationobjects(that is, the set could be
null), nor if thereareany suchoperationobjects,precisely
which kindswill bepresent.Codeconsuminganapplica-
tion objectmustdealwith it on that basis;that while an
operationobjectset is defined,it may be emptyand,if it
is not empty, that further interrogation of individual oper-
ation objectswill be necessaryto determinethe natureof
theoperationsavailable.

4 Application Ar chitecture

Building upon the conceptof self revelation,an applica-
tion architectureasdepictedin Figure4.1hasbeendevised.
While the structuremay, at first, appeardaunting,it is, in
fact,aquiteorderlythingwhichmaybeeasilyunderstood.

An applicationpresentedin the imageof PIA beginswith
a centralapplicationobject,labeledPacAppl in theupper
centerof thefigure,which is theroot structurefrom which
all further componentsemanate. Four principal compo-
nentsarecurrentlyprovidedby thePacAppl object:

1. A setof operationsthat the applicationis willing to
perform,

2. A massof datawhich the applicationcurrentlycon-
tains,

3. A structureby which thecontaineddatais identified,
and

4. An ecdysiasticalsorting of the information-bearing
objectsin theapplication.

Thefirst threecomponentsaredepictedin thefigurein the
upperleft, theuppercentralto lower left diagonal,andthe
centralright, respectively. Thefourthcomponentis notde-
picteddueto its structuralcomplexity. Eachof thesecom-
ponentsis takenup in its own subsectionbelow.

4.1 Application Components

4.1.1 Parameter Configurations

Thearchitecturaldiscussionbeginswith theholdersof pa-
rameters(the objectswhich hold applicationdata of all
forms)depictedasthestructureproceedingto thelowerleft
from thePacAppl object.Theseobjects,labeledPacCfg in
thefigure,arecalled‘configurations’.If oneconsidersthe
aggregateof all datain anapplication(bothinput andout-
put of all typesandforms) to constitutean n-dimensional
space(where,admittedly, n canbe quite a large number),
thenaparameterconfigurationis consideredto identify ex-
actlyonepointin thatdimensionalspace.Putlessformally,
aconfigurationis simplyadistinctsetof inputdataand(as
appropriate)theoutputdatait givesriseto.

Becauseof this definition, a changeddata value consti-
tutesa new dataconfigurationand,commonly, resultsin a
new PacCfg object.Becausethedatasetof a typical PIA-
wrappedapplicationis expectedto belarge,it wasdecided
thatsimplereplicationof theentiredataseteachtimeanew
configurationoccurredwould be wasteful. Thus, as de-
pictedin thefigure,PacCfgobjectsarearrangedin ann-ary
treeandthePacAppl objectidentifiesthePacCfgactingas
the patriarchof that tree. DescendentPacCfg objectsare
consideredto inherit missingdatacomponentsfrom their
ancestralconfigurations,thuseliminatingtheneedto repli-
cateunaltereddata.

3

�����������
	

�������� �

�������� � �������� � �������� �

�������� � �������� � �������� �

����� ������� �� ����! "
����� ��#$��� �% ���&! " ����� �%'���(*),+����&! "

����� �%-���� �% ���&! " ����� �%($��(*)�+�����! " ����� �/.&��0*1�2����&! "

����� �%'���(*),+��/�&! " ����� �%'3��(*),+��/�&! " ����� �%'3��(*),+��/�&! "
����� �%.&��031/2��/�&! "

����� ��#$��� �% ���&! " ����� ��#$��� �% ���&! " �%��� ��#4��� �� ����! "

5�687:9
; < <

5=687:>@?A;/B 5�687:C�DE?

FHG IKJ4LAM�I

FHG IKJ4NPOHQ FHG IRJ4S�TVU FHG IRJ4WAXZY

FHG IRJ4N FHG IRJ4[FHG IKJ4\ FHG IKJ4] FHG IRJ4L F�G IRJ4^

Figure4.1: PIA ApplicationArchitecture

Thepotentialoperationof this architecturecanbeseenin
the figure. The PacCfg object acting as the patriarchof
the configurationtree(that is, the PacCfg objectdirectly
pointedto by the PacAppl object)will often containthe
fully populateddata set of the problem being explored.
In the figure this would be the parameterobjectslabeled
A/Inl/Cfd throughF/Noz/Cfd.DescendentPacCfg objects
would containonly the parameterobjectsbeing changed
in the courseof researchinvestigation. In the figure, the
first two directdescendentsof thepatriarchchangeonly the
E/Duc/Cfdparameterobjectwhile the third directdescen-
dent also changesthe F/Noz/Cfd parameterobject. The
threefurther descendentsof the first direct descendentgo
on to hold modifiedvaluesof theA/Inl/Cfd parameterob-
ject. The bottomleftmostconfigurationthushasits own
A/Inl/Cfd parameterobject, inherits its E/Duc/Cfd item
from its direct parent,and inheritsall remainingparame-
terobjectsof thecomprehensivesetfrom thepatriarch.

Parameterobjectswithin a configurationare maintained
as a map (implementedin fact as a balanced,binary
tree) sortedby a fully-qualified name(for example, the
A/Inl/Cfd name above). Duplicate namesare not al-
lowed,soeachparameterobjectmusthaveaunique,fully-
qualifiedname.Thereasonfor thisarrangementis to avoid
the needlessreplicationof datastructurein caseswhere
only that structureuniquely identifiesa particularparam-
eterobjectto beheldin modifiedform in adependentcon-
figuration. Thestructureof datais movedinto thecontent
of the fully-qualified nameso thatonly thatparticularpa-
rameterobjectneedbe replicated(in modifiedform) in a
descendentconfiguration.

To make this fully-qualified nameconceptmoreconcrete,
considera multi-block CFD codein which eachblock has
asetof repeatedattributeswhoseparticularvaluemayvary
from block to block. Thus, block 1 would have the at-
tributesA, B, andC, aswouldblock 2, block 3, andsoon.
Without themovementof structureinto thefully-qualified
name,it would beat leastnecessaryto replicateblocks1,
2, and3 in order to changethe B attribute of block 3 so
asto make it clearthat themodifiedB attribute is, in fact,
theB attributeof thethird block. By moving structureinto
the fully-qualified name,perhapsby namingthe attribute
B/Block3/SomeCfdCode,it is only necessaryto replicate
the modified B attribute in the descendentconfiguration.
Thefact that it is theB attributeof thethird block is made
clearby thefully-qualifiedname.

By expandingtheconfigurationtreeaswork progresses,a
researchermayparametricallyexplorea designspacewith
reasonableeconomywhile leaving a comprehensive docu-
mentingtrail behind.As will bediscussedin alatersection,
a numberof distinctpoliciesmaybeimplementedwith re-
gardto theestablishmentof anew configurationasopposed
to themodificationof anexistingconfiguration.

4.1.2 Parameter Identification

Theconfigurationstructurediscussedabove introducedthe
conceptof the fully-qualified namewhosepurposewasto
capturethestructureof datawithout requiringtheneedless
replicationof thatstructurewithin eachparameterconfigu-
ration.Therevelationof structurewithin thedata(which is

4

a revelationof contentfor thePacAppl object)is takenup
by the identificationstructuredepictedat the centralright
of theFigure4.1.Thesearetheobjectswhoselabelsbegin
Pid, eachof which is followedby anametext.

This parameteridentification elementof the application
architectureis, again, arrangedas an n-ary tree. In this
case,the treestructureis usedto reveal thecorresponding
datastructureof theapplication.Thefully-qualified name
of a parameteris developedby concatenatingthenamesof
eachof thetreeelementsleadingto thefinal identification
of thatparameter. In theexampleof thefigure,all datapro-
ceedsfrom theapplicationroot, Cfd. Cfd hasthreemajor
datastructures:Duc (Duct), Inl (Inlet), andNoz (Nozzle).
Descendingfrom this level, Inl hasthreeparameters,A, B,
andC, Duc hastwo parameters,D andE, andNozhasone
parameter, F. Thus, the fully-qualified nameof the B pa-
rameterobtainedby concatenatingthe namesof the path
elementsleadingto its identificationwouldbeB/Inl/Cfd.

Beyondthis point, theparameteridentificationstructureis
unremarkable.The only point to be madeis that, at any
particular level of the tree, the namesof identified data
items/structuresmust be unique. Thus, the Noz identifi-
cationcannotberepeatedat its level. Shifting to theexam-
ple of themulti-blockCFDcode,this meansthatthename
‘Block’ maynot simply be repeated.Instead,namessuch
as‘Block01’, ‘Block02’, ‘Block03’ andsoonmustbegen-
erated(probablyasa dynamicresponseto problemsetup)
to make the multiple-blocklevel of the datastructureun-
ambiguous.

4.1.3 Operations

A key elementof mostapplicationsis not solely that they
hold data,but thatthey do somethingwith thatdata.Often
somealgorithmis executedduringwhich inputsareturned
into outputs.To reveal theseoperations,thePacAppl ob-
ject identifiesamapof operationalobjects(labeledOp fol-
lowedby a namein upperleft of Figure4.1)sortedby op-
erationname,whichmustbeunique.In theexampleof the
figure, threeoperations,Init (Initialize), Kill (Kill a run-
ning operation),andRun (take the input dataandrun the
operationto completion,acquiringnew output data),are
provided.

Someoperationsmayrequirespecificinteractionwith the
researcher. For instance,anoperationobtaininginput from
a file may needto prompt the researcherto identify the
file to be used. For this purpose,a GUI call-backclass,
PacGUI, is definedwhich providesa known, well-defined
setof suchinteractions.Suchanobjectmustbesuppliedto
eachoperationeachtime thatoperationis invoked.

While standardsas to what a particular operationname
shouldconnotearebeingcontemplated(for instance,‘Run’
will probablyconnoteabatchstylerunto completionwhile
‘Start’ would indicateaninteractive operationinitiation to
be terminatedby somelater ‘Stop’), thereis no standard
or requirementfor the operationsthat any particularPIA-
wrappedapplicationis to provide. Thusit is that theHigh
SpeedResearch(HSR) Inlet Unstarttestsupport(thefirst
applicationactuallyadaptedto this architecture)provides
neither‘Start’ nor ‘Stop’, but insteadprovides‘LoadFrom-
File’ and‘CreatePlaceHolder’operations.

4.1.4 Object Sorting

A fourthstructurehasbeendefinedandimplemented,but it
is not shown in thefigure.Thestructureprovidesa sorting
of objectsof theapplicationby their derivationalheritage.
For example,a far-field Machnumberparameterobjectis
sortedasbeing

1. A far-field Machnumberparameter,

2. A Machnumberparameter,

3. A dimensional,doublescalarparameter, which is, in
fact,non-dimensional,

4. A dimensional,doublescalarparameter,

5. A double,scalarparameter,

6. A scalarparameter,

7. A parameter,

8. A describableapplicationobject,

9. A directedgraphobject,

10. A status-bearingobject,and,finally,

11. An object.

The needfor this derivationally-exhaustive sorting arises
becausea particularapplicationmayspecializeparameters
beyondthelevel thatis well known. Continuingtheexam-
pleabove,anapplicationmaydefineandusemany particu-
lar, customtypesof far-field Machnumberparameters,but
have no parameterobject instancesthat areexactly a far-
field Machnumberparameterasdefinedfor all applications
by the architecturalstandard.Without the derivationally-
exhaustive sorting,an inquiring applicationwould have to
examineeachparameterto determineif it was, in fact, a
kind of far-field Mach number, while with the sortingan
inquiry can be directedimmediatelyto thosespecialized

5

parameterobjectseventhoughnonemaybeexactly a far-
field Machnumberparameterobject.

This object-sortingstructurehasbeenunusedto this point
sinceits utility is principally of useto searchenginesand
thelike,whicharethemselvesasyetunrealized.

4.2 Operating Context

By now the readerwill be impatientto learn the signifi-
canceof thegreat,sweepingcurvesthatrun from eachter-
minal nodeof the parameteridentificationtree,andfrom
eachnodeof the operationidentificationtreeto the lower
leftmostnodeof theconfigurationtree.Theansweris that
theobjectsof boththesestructuresoperatewithin thecon-
text of a particularparameterconfigurationwhich mustbe
identifiedwhencertainfunctionsareinvoked.

Identificationsandoperationsoffer IsVisibleandIsEnabled
memberfunctions,respectively. Theseoperationsindicate
whetherornottheirpresentingobjectsareactive(aftertheir
kind) within thecontext of thecurrentparameterconfigu-
ration. By this means,an Initialize operationcouldrefuse
to work whenqueriedin the context of a parametercon-
figurationthateitherhador inheriteda populateddataset.
Similarly, an identificationof, say, a turbulencemodelpa-
rameterwould respondthatno suchparameterexistsif the
turbulencemodel,itself, is turnedoff in theidentifiedcon-
figuration,eventhoughit mightwell inheritsuchaparame-
ter from anancestralconfigurationin whichthemodelwas
turnedon.

5 Configuration Policy

As illuminatedabove, theapplicationarchitectureis quite
abstractandleavesan enormousamountof room for ma-
neuver in adaptinganapplicationto thePIA environment;
however, thearchitecturealsoleavesconsiderablelattitude
to theconsumingtool (mostcommonly, aconformingGUI)
to make of thingswhat it will. Oneof theseareasis the
configurationpolicy to be appliedwhenmodifying a data
item.

As notedin thearchitecturesection,themodificationof a
dataitem identifiesa new point in the n-dimensionaldata
spaceand,customarily, resultsin the generationof a new
configurationobjectattachedto theconfigurationtreeat a
pointappropriateto inheritall theotherunmodifiedparam-
eterobjects. This is a policy which is, itself, not actually
provided by the PIA implementation,nor is it necessarily
mandatedby thearchitecture.Thedecisionto actuallyim-
plementthispolicy is left to theconsumingtool.

Thereasonfor leaving this policy decisionto theconsum-
ing tool is that this is not theonly reasonablepolicy. Sev-
eraladditionalpoliciesaresuggestedin thefollowing sub-
sectionsandit maybethata GUI might well wish to offer
someor all of thesepoliciesto the researcherto facilitate
thework beingconducted.

5.1 Replication

This policy is the one initially suggestedabove. A new
configurationis generatedandattached,presumablyasthe
direct descendentof the configurationcontainingthe data
itemtobemodified,andtheencapsulatingparameterobject
is replicatedin that new configurationwith the modified
value. This might be consideredthe basicstepin design
spaceexploration.

5.2 Modification

If thedataitem is containedin a configurationwith no de-
scendentconfigurations(or, for additionalcomplexity, no
descendentconfigurationsinheritingthedataitem),theen-
capsulatingparameterobjectcanbemodifiedasit resides
in the existing configuration,provided that no output re-
sultsexist in that configurationor that suchoutputresults
asdo exist areeithermarkedinvalid or arediscarded.This
policy, while not soutterly clearastheprevious,might be
usefulwhencastingabouttrying to find ameaningfulstart-
ing point.

5.3 Invalidation/Re-execution

In this policy, the dataitem may be modifieddespite(in-
deed,becauseof) the fact that descendentconfigurations
inherit the datavalue. Here,the policy goesbeyond sim-
ply invalidatingtheoutputdatadependenton thedataitem
to bemodified.Thepolicy wouldspecifytheautomaticre-
executionof theapplicationto regeneratethoseresultswith
theeffect thatanentiredesignspacemight beanalyzedas
theresultof a singleact. Note, though,that thesemantics
of architecturallyidentifying there-executionacthave not
yet beendevised; however, if andwhen the implementa-
tion of suchapolicy shouldcometo hand,thedevelopment
of appropriatesemanticswould not seemto be a difficult
problem.

5.4 SubgraphReplication

Thepreviouspolicy hasthedisadvantangeof discardingthe
previousresultsof thedesignspacerepresentedby thede-
scendentsof the configuration.A furtherextensionof the

6

policy couldbe to (1) replicatetheencapsulatingparame-
ter objectfor modificationin a new, sibling configuration,
(2) replicatethe descendentsubgraphinheriting the origi-
nal valueasa descendentsubgraphinheritingthemodified
valueand,then,(3) invalidateandregeneratetheoutputre-
sults in that replicatedsubgraph. This policy allows the
parametricstudyof completedesignspaceswhile retaining
all of thepreviouslygeneratedresults.

6 The BaseObject

Verynearlyall of theobjectclassesinvolvedin implement-
ing the PIA applicationarchitecturedescribedabove are
derived from a commonbaseclass,PacBObj. This base
classprovidesseveralkey features:

1. The (inherited) ability to participate in a directed
graph,

2. Theability to be‘described’,

3. Theability to transmitdeclaredevents,and

4. Theability to traverseupwardthroughtheapplication
structure.

6.1 Dir ectedGraph Capabilites

The ability to participatein a directedgraphallows the
direct implementationof the n-ary treesof the parameter
configurationand identificationstructuresthrough inher-
ited characteristics.An n-ary tree is, after all, merely a
directed,acyclic graphin which only oneimmediatepre-
decessoris everallowed.

As will benotedlater, furtheruseof thedirectedgraphca-
pability is made.

6.2 DescriptiveCapabilities

The ability to be describedbrings a good deal of useful
functionto theentiretyof thearchitecture.Thedescriptions
that may be addedto any suchobject includebut arenot
limited to

1. A name(with synonymsif desired),

2. A setof accesscontrols,

3. An annotation,

4. A short,descriptive text,

5. A changehistory,

6. A drop-down prompt,

7. Oneor moregraphicaldescriptions,

8. A UniversalResourceLocator(URL),

9. A descriptive,multi-line text,

10. A type,

11. A measurementunit description,and

12. A relatedparameterreference.

Indeed,virtually any sortof descriptiveelementcanbede-
visedandaddedto therepertoiremerelyby deriving aclass
from theappropriatedescriptivebaseclass(whichis, itself,
derivedfrom PacBObj andmay, thus,bedescribed).

Becausenotall objectswill necessarilyhavedescriptiveel-
ementsandcertainlynotall objectswill haveall descriptive
elements,it wasdesiredto makethedescriptivesystemone
of minimal overhead. Thus, insteadof a seriesof com-
ponentsembeddedin the PacBObj class,the only fixed
componentof thedescriptive systemis a pointerto anor-
ganizingheadwhich, if present,ecdysiasticallysortsa set
of descriptionobjectsby type. Thus,theonly unavoidable
overheadis that of a singlepointerwhich, occassionally,
maybenull.

Theonly limitation of thedescriptivesystemis that,within
a descriptive set,only oneinstance,at most,of any partic-
ularcontrollingdescriptive type(thatis, atmostonename,
oneannotation,oneURL, etc.) is permitted.This limita-
tion is offset to an extent by the fact that the descriptive
systemis implementedin a layered,hierarchialmannerin
parallelwith the derivationalclasshierarchy andthat dis-
tinct descriptivesetsmayexist ateachsuchlevel. Thus,for
example,a scalardoublekinematicviscosityobjectmight
bedescribedat thelevel of

1. A kinematicviscosity,

2. A viscosity,

3. A dimensionalscalardoubleparameter,

4. A scalardoubleparameter,

5. A scalarparameter,

6. A parameter, or

7. A PacBObj object.

7

This presumes,of course,thatthat is thederivationalclass
hierarchy of theobject.

Within this descriptive hierarchy, the top-mostdescription
(that is, the descriptionof themostderivedclasslevel) of
any kind is consideredto bethepreferreddescription;how-
ever, thefacilitiesexist to revealtheentiretyof thedescrip-
tivehierarchy shouldit bedesired.

6.2.1 EngineeringLogs

Themulti-line,descriptivetext form is providedasthepos-
siblebasisof anengineeringlog facility. Hereanindefinite,
expandablenumberof text stringelementsin anorderedlist
canbe associatedwith any PacBObj derived object. All
that is lackingis for theconsumingGUI to provide anap-
propriateeditingfacility to access,modify, andupdatethe
text. This form doesnot offer any implicit time stamping;
however, if sucha featureweredesired,it couldbeadded
easilyenoughin aderivedclass.

6.2.2 ChangeHistories

A changehistorydescriptive form is provided. It provides
animplicitly time-stamped,ordered,multi-line descriptive
form. This form is implicitly usedby the PacPara (pa-
rameter)baseclassto recordparametermodificationsas
previous value texts. All currently implementedparame-
terclassesutilize thiscapabilityin theircorrespondingSet-
Valueservices.

6.2.3 AccessControls

The final descriptive form worthy of further discussion
is the accesscontrol description. Again, any PacBObj-
derived object can attach accesscontrol descriptions
throughoutits descriptive hierarchy. Thesedescriptions,
while definedonly in termsof baseclassfunctionality, typ-
ically consistof an orderedlist of accesscontrol entries
againstwhich an identifieduseris checked. The first en-
try matchingthe userprovides the accesscharacteristics
granted.Shouldno suchmatchbe made,a default policy
is applied.Sincedescriptions,andhenceaccesscontrolde-
scriptions,are themselvesderived from PacBObj, access
controlsmaybeappliedto accesscontrols.This recursive
loop is broken by a self-controlledaccesscontrol which
providesaccesscontrolcharacteristicsnot only for theob-
ject it describes,but for itself aswell.

Perhapsthemostremarkablethingabouttheaccesscontrol
descriptive form is thatit wasaddedto thedescriptive sys-
temon theorderof a yearafterthedescriptive systemhad

beendesigned,implementedand,in aprojectsense,‘put to
bed’, thusillustratingthepower andflexibility of thebasic
descriptive concepts.It is also importantto note that the
accesscontrol descriptive form (aswith all the otherde-
scriptive forms) incursno object ‘cost’ beyond the single
mapheadpointer (which may be null) until it is actually
used.

6.3 DeclaredEvents

The PacBObj baseclassimplementsan event facility in
whichsomeutilizing entitymayattachoneor moreobjects
of PacEvent derivationto aPacBObj-derivedobject.This
eventbaseclassdefinesa numberof differentevent types
but, as a baseclass,provides at most a default response
shouldtheeventbedeclared.ThePacBObj baseclassim-
plementscorrespondingeventfunctionswhich, if invoked,
will identify eachattachedevent object and transmit the
eventdeclarationto it.

Utilizing codeis responsiblefor developingandattaching
derivedeventclassformswhich do somethingmeaningful
shouldan eventbe declared.Justexactly whatact occurs
is left entirelyto theutilizing code.Automatedcorrections
may be applied,email may be sentto a user, a notation
madein a log file, or nearlyany otherthing mayoccurin
response.Further, thereis norequirementthattheeventob-
jectsusedbeof thesamekind and,evenbeyondthis, there
is noartificial limitationonthenumberof eventobjectsthat
maybeattachedto a particularPacBObj object,nor upon
thenumberof PacBObj objectsthatmaybeattachedto a
particulareventobject.

As a facility definedand implementedin the PacBObj
class,theeventmechanismis availablethroughoutvirtually
all of theapplicationarchitecture.Applications,parameter
configurations,operations,parameters,parameteridentifi-
cations,descriptions,andmoremayall declareeventsfor
notation,action,or otherresponseby utilizing code.

6.4 Upward Reference

Thebasicdirectionof theapplicationarchitectureis down
from encompassingcomponentsto morespecificcompo-
nents. Applications identify operations,configurations,
and parameteridentifications,configurationsidentify pa-
rameters,parametersidentify descriptions,andso on. In
implementation,though,it is frequentlynecessaryto tra-
versein the oppositive direction;an operationobjectmay
needto identify its applicationobject so that it can then
locatetheparameteridentificationstructure.

8

Thisneedis metby apointermemberandsupportingcode
in thePacBObj classwhichreferencesthenext higherlevel
elementof the applicationstructure. Parameters,for ex-
ample,referencetheir containingparameterconfiguration
object.

Thesupportingcodepermitstraversalsof thisupwardlink-
agein searchof aparticularkindof object.Thus,simplere-
questsmaytraverseseveralstructurallevels. Further, such
codeneednot besensitive to thenumberof levelsskipped
to locatethe desiredstructurallevel. A descriptionseek-
ing to locatetheapplicationobjectneednot beconcerned
whetheror not it directlydescribesaparameterin aconfig-
urationof anapplication;its uplevel referencecodingwill
work equallywell if it is a descriptionof a descriptionof
a descriptionof a parameterin a configurationof an ap-
plication,or if it is a descriptionof an identificationof an
application,or a descriptionof an operationof an appli-
cation. This allows wide applicationof codingthat must,
itself, still traversethestructuralform of applications.

7 Parameters

Dataitemsto beplacedin configurationsareencapsulated
in objectsderived from a commonparameterbaseobject,
PacPara, which is itself derivedfrom PacBObj. As men-
tioned in the previous section,the PacPara classimple-
mentsan implicit changehistoryprotocolwhich notesall
thepreviousvaluesof theencapsulateddataitem astime-
stampedtext entrieskeptin anorderedlist.

7.1 DependentParameters

Theparameterbaseclassutilizes thedirectedgraphcapa-
bilities inheritedby it to implementa dependentparame-
ter mechanism.PacPara provides implementingcodeto
regard eachsuccessorof a graphin which the presenting
objectparticipatesasbeingdependentuponthedatavalue
which thepresentingobjectencapsulates.In theeventthat
that value is changed,thoseobjectsdependentupon that
value(throughouttherangeof thegraph)areinformed.

Of somewhatgreatercomplicationthanthis is therealiza-
tion that thereplicationof a benefactorparameterrequires
thereplicationof its dependentparameters.If a benefactor
parameterin a particularconfigurationis to be replicated
andmodifiedin a descendentconfiguration,thedependent
parametersof that original benefactorcannotalso be de-
pendentsof thereplicatedparameter. In turn,thereplicated
(andmodified)benefactorcannotsimply inherit thedepen-
dentsof theoriginal parametersincetheir values(presum-
ably) representcorrectdependentvaluesfor that original

parameter, not themodifiedvalueof thereplicatedparame-
ter. Thus,PacPara must(anddoes)provide codethatwill
correctlyreplicatethe dependentsubgraphof a replicated
parametersothatthemodifiedvalueof thereplicatedbene-
factormaybecorrectlypropagatedto thereplicateddepen-
dentsin thatsubgraph.

7.2 Infusion of SemanticMeaning into ParameterOb-
jects

The self revelation of kind mechanismprovided by the
foundationobjectof thedevelopedclasssystemis usedby
theparameterobjecthierarchy to infusesemanticmeaning
into parameters[3]. Thefirst derivationsof parameterob-
jectsspecializeparametersby their basicstructuralforms;
scalar, vector, matrix, organizational,andthelike. Further
derivation then associatesan atomic kind; long, double,
Boolean,string, and the like with theseforms as appro-
priate.

A furtherspecializationof doubleparameterkindsdeclares
themto bedimensionalin nature,that is beinga measure-
ment in somesystemof measurementsuchas the metric
systemof measurement.(The conceptsof dimensionality
arediscussedin greaterdetail in [4].) From this point a
greatmajority of engineeringparametersmay thenbe de-
rived, eachdrawing upon the dimensionalbasefacilities
to presentthemselves in the systemof measurementre-
quested.

Many otherengineeringparametersarenon-dimensional.
Thus, the next specializationof dimensionalobjects is,
paradoxically, to a non-dimensionalform which maythen
be used as a basis for thesenon-dimensionalparame-
ters.Thebasingof non-dimensionalityuponadimensional
foundationallows the free combinationof theseparame-
terswith dimensionalvalues. Thus,a Mach numbermay
bemultiplied by a computedspeedof soundto resultin a
dimensionalspeedavailablein whatever systemof unitsis
desired.

Therelatedparameterdescriptive mechanismis utilized to
associateotherparametricinformationwith semantically-
definedparameterobjects.Considerthe following utiliza-
tion of thecapability.

1. A vectorof doublevaluesis specializedthroughsev-
eral layersof derivationto bea one-dimensional-grid
of total-pressurevalues.(Thederivationof theclassis
shown in Figure7.1.)Thatkind of parameterobjectis
thendefinedasassociatingthroughtherelatedparam-
eterdescriptive mechanisma vectorof linearposition

9

measurementswhich reveal the X-coordinatevalues
of thatone-dimensionalgrid.

2. Another parameterspecializationthroughderivation
createsa vectorof thoseone-dimensional-gridtotal-
pressureparameterobjectswhich is declaredto be a
time-historyof thoseparameters.(The derivation of
theclassis shown in Figure7.2.) Therelatedparam-
eterdescriptive mechanismis again usedto locatea
time-valuevector the elementsof which aredefined
asbeingthe timesassociatedwith the corresponding
elementsof thetimehistoryvector.

By working to thesemanticmeaningsof thesetwo classes,
aconsumerof thesecondparameterobjectmaydiscover it
to bea time historyof one-dimensional-gridtotal-pressure
valuesfor whichit mayfurtherobtain(1) thetimesatwhich
eachgrid result is valid and (2) the positionsof the grid
points.

This infusion of semanticmeaningthrough derivational
specializationexposedthroughself revelationof kind and,
to anextent,contentis anenablingtechnologyfor theprop-
agationof informationbetweenapplications,aswill bedis-
cussedshortly.

_
`baPc�d�e=f

_
`baPc�g�fVh

_�`baPc�ikj�l

_�h=e�mn`baPc

�h=e�
h=o8h

�h=e�
h=o8h�pno8o

_
h�e=_�h=o8h�pno8oVikqsr
a

_
h�e=_�h=o8h=p�oVo8ikqsr
atiku4v

_
h�e=_�h=o8h=p�oVo8ikqsr
at_�oVw

_
h�e=_�h=o8h=xkh�wPp�oVo8_�fVy

_
h�e=_
h�o8h=xkh�w{zRikxkoVu}|~_
f8y

Figure7.1: Derivationof aOne-DimensionalGrid of Total
Pressures

�����R�����=�

�
�k�R�����V�

�
�k�P�:�����

�����=���k�R�

�����=�����V�

�����=�����V�=���V�

�����=���=�V�����V�V�����V�

���=�����=�V�����$�����$�P�

���=�����=�V�������P���b�P���A�����V�4�s���V�

Figure 7.2: Derivation of a Time History of One-
DimensionalGrid of TotalPressures

8 Persistence

Saving the stateof an encapsulatedapplication,whether
implicitly or explicitly commanded,is a self-evident re-
quirementandwas,in fact,oneof thevery first challenges
confronted.Review of variouscommercialdatabaseprod-
ucts at the start of the project revealedall of them to be
generallyintolerantof evolutionary change,which itself
wasanotherrequirementof the PIA effort. This wasnot
an overriding concernthoughbecause,for administrative
reasons,theseproductssimply were not available to the
project.

To meetthe persistencerequirement,an object serializa-
tion capabilitywasimplemented.In this approachobject
contentsare written out to or readback from an archive
file (or other repository)underthe control of a Serialize
function. (The ‘Serialize’ nameis entirely arbitrary.) An
archive objectkeepstrackof whatobjectshave beenseri-
alizedor de-serializedso that redundantreferencesto an
objectaretreatedassuchanddo not causeredundantseri-
alizationsor de-serializationsof theobject.

Thedrawbackof thisserializationis alsoits strongpoint: a
Serializefunctionmustbemanuallycodedfor every class
that might participatein suchan operation. For the most
part suchcodingamountsto meretedium; however, it is
in thiscodingthatthegroundwork for evolutionarychange
canbe laid. If one takes the precautionof serializingan
archive versionnumberasthe very first stepof objectse-
rialization,thenconditionalcodefor thede-serializationof

10

old objectversionscanbegeneratedwhenobjectrevisions
aredefined.By this means,old objectsmaybe recovered
evenwhenthebaseclassof aclasshasbeenchanged.This
allowsquiteextraordinaryrevisionstoanimplementedPIA
wrappingto beeffectedwithout loosingold, archivedver-
sionsof theimplementation.

As utilized in theC++ implementationof thearchitecture,
theserializationof objectsis explicitly commandedandre-
sults in an act which savesthe entireapplicationwrapper
instanceto persistentstorage,or recoversthatentireobject
setfrom storage.As will bediscussedlater, theCommon
ObjectRequestBroker Architecture(CORBA) implemen-
tationof thearchitectureis implicitly persistent;however,
the sameserializationmechanismis, in fact, used,but on
an object-by-objectbasisratherthanacrossthe entireap-
plicationwrapperobjectsetasawhole.

9 Information Propagation

The infusion of semanticmeaninginto parameterobjects
through derived class specializationand self revelation
mechanismsformsthebasisfor the interapplicationtrans-
fer of informationby allowing oneapplicationto ‘look’ at
parametersof anotherapplicationanddiscernon an auto-
matic basisthe semanticnatureof the observed parame-
ter objects.This basictechnologyenablesa numberof in-
terapplicationinformationtransfermodesfrom user-driven
collaboritive exchangesthroughautomatedbrowser/search
engineharvestingof informationto completelyautomated
applicationgraphsfor comprehensiveengineeringanalysis
of aprojectasa whole.

Because the propagation of parametric information
throughoutapplicationgraphscould be implementeden-
tirely within the PIA framework, it was the first form of
informationtransferimplementedby the PIA project [5].
Thebasicgoal is ashasbeenpreviously suggested:to ar-
rangedisparateapplicationsintoacooperativegraphwhose
operationcarriesoutall of theanalysesrelevantto anengi-
neeringprojectasawhole.

Considerasanexampleof thearrangementof applications
into a graphfor the purposesof informationpropagation
thesituationdepictedin Figure9.1. Here,ananalysiscon-
trol applicationis madethe initial nodeof the application
graph. This pseudo-applicationexists solely as a conve-
nientpoint for declaringnew configurationsof theoverall
problemandsettingparameterswithin thoseconfigurations
to controltheanalysisdone.Two read-onlyapplications,a
wrappingof CAD geometryinformationanda wrapping
of Particle ImagingVelocimetrydataarethe initial node’s
immediatesucessors,eachleadingto the‘real’ application

in this example,a wrappingof an two-dimensionalflow
solver. Thedesignof this particulargraph,then,is to pro-
vide threesourcesof informationto the flow solver, each
of thosepiecesproviding an independentpartof the input
wholefor thatsolver.

The basicconceptualview behindthe arrangementof an
applicationgraphis that therealwaysexists somesource
definitionof a proposedconfigurationof theprojectwhich
then feedsas input to variousanalysesof that configura-
tion. Thoseanalysesthen produceresultswith two po-
tential aspects:intermediatevalueswhich are of usefor
furtherformsof analysisandfinal answerscontributing to-
warda judgementof theengineeringmeritof thedesign.

Anotheraspectimplicit in this view of informationpropa-
gation throughoutdirectedapplicationgraphsis that such
applicationsoperatein whatmight becalleda batchmode
that reliably turns input information into output informa-
tion. Theinformationpropagationschemeasimplemented
to datedoesnot contemplatean interative cycle uponthe
graphuntil someresultbalanceis achieved. Note,though,
that thearchitecturedoesnot precludesucha formulation
atsomefuturepoint.

Yetanotherfeatureof informationpropagationaspresently
implementedby thearchitectureis theforcedsynchroniza-
tion of parameterconfigurations.Informationpropagation
is requiredby the implementingcodeto be from a par-
ticular parameterconfigurationand, potentially, the con-
figuration subgraphwhich it heads,to a preciselycorre-
spondingparameterconfigurationin thereceiving applica-
tion and,potentially, the configurationsubgraphwhich it
eitherheadsor which is createdfor the purposesof prop-
agation with the particularreceiving parameterconfigura-
tion asits header. By thisenforcedstipulation,theconcept
of a projectconfigurationasencapsulatedby the configu-
rationobjectschemeis mademorerealand,it is expected,
theproblemof mismatchedconfigurationswithin a project
analysiswill be eliminated. No longerwill the weight of
thethin tankwall becombinedwith thestrengthof thethick
tank wall to producea winning designin all departments
exceptmanufacturing.

To seethissynchronizationof configurations,considerfirst
the pre-propagation situationdepictedfor two application
graphmembersin Figure 9.2. The parameterconfigura-
tion graphof thesuccessorapplicationis, clearly, a subset
of the configurationgraphof the predecessorapplication.
(Thesuppositionhereis thattheconfigurationgraphof the
successorapplication,in fact, correspondsexactly to the
left portionof thegraphof thepredecessorapplication,pre-
sumablybecauseof prior actsof informationpropagation.)
After informationpropagationhasoccurred,asdepictedin

11

 ¡ ¢ £ ¤ ¤ ¥ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ ©
 ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¬�=®K¯�°²±H³&±�´sµ²=¶@·¸µ²¯K¬º¹�¹»¯�³&¼A®K¶¸³,µ²

 ¡ ¢ £ ¤ ¤ ¥ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ ©
 ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ´»¬�½�¾
¿sÀ�´»¬�ÁÃÂ
ÄKµ²ÅÆÄA¶¸·¸°

 ¡ ¢ £ ¤ ¤ ¥ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ ©
 ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ½�®A·¸¶¸³&¼K¯�Ä�¿*ÅÇ®KÈK³&�ÈºÉ�ÄK¯�µ²¼K³&ÅÇÄK¶@·¸°�Ê%½¿�É�Ë

 ¡ ¢ £ ¤ ¤ ¥ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ ¦ ¤ ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ © ¡ ¢ § ¨ ©
 ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « ¡ ¢ ª « Ìs½E¬�¾
´sÀHÍÎ¿*ÌsÁÃÏÁÑÐ�¯�µ²ÒÓ¬º�®K¯�°²±Ô³&±

Figure9.1: A SimpleArrangementof Applicationsinto aGraphfor InformationPropagation

Figure9.3,new parameterconfigurationgraphnodeshave
beencreatedin thegraphof thesuccessorappplicationso
asto exactly duplicatetheconfigurationnodefrom which
the informationpropagationoccurredandto duplicatethe
subgraphwhich that configurationnodeheads,from each
elementof which information propagation has also oc-
curred.

The information propagation implementationalso recog-
nizesthat not all applicationsareentirely reliablein their
operation. (Indeed,it was the twitchy natureof sophisti-
cated,high-fidelity CFD codesthat gave part of the im-
petusto the PIA project in the first place.) To dealwith
this, theinformationpropagationsupportutilizestheevent
mechanismbuilt into thePacBObj baseclasstoallow inap-
propriateoperationsto alertsupposedlycorrective entities,
whetherautomatedor human-interactive. Thereis, through
this facility, the ability to apply corrective measuresand
re-attempta particularoperationin theoverall propagation
activity. Failing suchcorrective actions,the information
propagationsystemwill mark theaffectedparametercon-
figurationsasbeingdefectiveandwill preventfurtherprop-
agativeactsbaseduponthoseconfigurations.

Theprocessof informationpropagationascurrentlyimple-
mentedproceedsin thefollowing generalmanner.

1. Theprocessisbegunbydeliveringapropagationcom-
mandciting a specificparameterconfigurationto an
applicationobjectwhich is, itself, amemberof anap-
plicationgraph.Typically, this applicationobjectwill
beactingastheinitial nodeof thatapplicationgraph.

2. The applicationobject doeswhat it may to convert
its own input information into output information.
Shouldthis elementof the processfail, information

propagationis discontinued.

3. Theapplicationthenpassesthepropagationoperation
on to eachof its immediatesuccessorsin theapplica-
tion graph. The identifiedparameterconfigurationis
passedon in thisact.

4. Eachreceiving successorapplicationestablishesthat
it hasacorrespondingparameterconfiguration,or cre-
atessucha correspondingparameterconfigurationin
its own configurationgraph. Furtherit verifies that
it has,or it creates,a subgraphcorrespondingto any
subgraphheadedby the identified sourceparameter
configuration.

5. Eachreceiving successorapplicationthen examines
the parameterobjectsavailable in the sourceparam-
eterconfiguration(andin thesubgraphwhich it may
head) and, basedupon the semanticmeaningsre-
vealedby thoseparameters,acquiressuchinformation
asit may. Theinformationis encapsulatedin thecor-
respondingparameterconfiguration(s)of the receiv-
ing application.

Eachreceiving successorapplicationis freeto exam-
ine the extendedpredecessorapplicationsof its own
propagatingimmediatepredecessorapplication,to the
extent that thosemay exist, to acquireinformation
from theparametersof thoseapplications,too, in the
event that not all relevant input is available from its
own immediatepredecessorapplications.

6. Wheneachreceiving successorhasreceiveda propa-
gationactfromeachof its own immediatepredecessor
applications,it thenoperatessoasto convert its own
inputsinto outputsandthenpassesthepropagationact
on to its immediatesuccessors.

7. Thepropagationof informationcontinuesin thisman-
ner throughoutthe graphuntil terminalnodesof the

12

ÕZÖ$×$ØHÙ@Ù¸Ú

ÕZÖ$×$ØHÙ¸Ù@Ú

Û&Ü,Ý%Þ*ß à

Û�Ü,Ý%Þ*ß à Û�Ü�Ý�Þ*ß à Û�Ü�Ý%Þ$ß à

Û�Ü�Ý�Þ*ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý�Þ*ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à

Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à

Û�Ü�Ý%Þ$ß à

Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à

Û�Ü�Ý%Þ$ß à Û�Ü,Ý%Þ*ß à Û�Ü�Ý%Þ$ß à

Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à Û�Ü�Ý%Þ$ß à

Figure9.2: ParameterConfigurationGraphsof Two ApplicationGraphMembersPrior to InformationPropagation

áZâ$ã$äHå@å¸æ

á¸â$ã$äÔå@å@æ

ç�è�é%ê$ë ì

ç�è,é%ê*ë ì ç�è�é�ê*ë ì ç�è�é�ê*ë ì

ç�è�é�ê*ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç&è,é%ê*ë ì ç�è�é�ê*ë ì ç�è�é%ê$ë ì

ç�è�é%ê$ë ì ç�è�é�ê*ë ì ç�è�é�ê*ë ì ç�è�é�ê*ë ì ç�è�é�ê*ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì

ç�è�é�ê*ë ì

ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì

ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç&è,é%ê*ë ì ç�è�é�ê*ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì

ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì ç�è�é%ê$ë ì

í�î~íRíRï%ðEñPò4óAíRô}õ�ô8ö4÷VøPíRù=ú õ�û

Figure9.3: ParameterConfigurationGraphsof Two ApplicationGraphMembersAfter InformationPropagation

graph are reachedand, recognizingthat they have
no successors,thoseterminalapplicationsreturn the
propagation act back up the graphicalchain to the
originatorof theact.

It shouldberememberedin all of this thatit is thetechnol-
ogy of self revelationexposinginfusedsemanticmeaning
thatmakestheimplementationof informationpropagation
tenable.Applicationswrappersneedonly becodedto look
for the kinds of informationthey desireto acquireduring
propagation, as in a processof filtering that that is of in-
terestfrom that that is not. It is not necessaryto codefor
connectionto a specificsourceapplicationto obtainanex-
pectedkind of information,nor is it necessaryto codefor
specifictopologicalarrangementsof applications.

10 Documentation

Complete,class-by-class,member-by-memberdocumenta-
tion hasbeengeneratedin Hyper-Text Markup Language
(HTML) format and placedon a central server the the
GlennResearchCenter. The documentationprovidesnot
only basicexplanatorytext as to what particularcompo-
nentsdo, but alsotries,whenappropriate,to discusswhy
particularchoicesweremade,what expectationsexist for
the useof particularcapabilities,and the like. The root
URL for thisdocumentationis

http://www.lerc.nasa.gov/WWW/price000/index.html

It mustbestronglyemphasizedthatthesepagesarethein-
formalgenerationof theresearcherinvolvedanddonot, in
any way, shape,or form, representanofficial statementof
theGovernmentof theUnitedStates.

13

11 Experience

To date,threeapplicationshave beenwrappedin theC++
implementationof thePIA ApplicationArchitecture:apre-
sentationof experimentaldata from an inlet unstartex-
perimentfor the High SpeedResearchproject (known as
HIU), a presentationof flowpath geometryinformation
from ComputerAided Design (CAD) sourcesaccessed
throughthe ComputationalAnalysis ProgrammingInter-
face (CAPRI) cross-vendorpackage,and an operational
wrappingof the Large PerturbationInlet (LAPIN) analy-
siscode.

11.1 HSR Inlet Unstart

Thewrappingof theHIU testwasencouragingbecause,up
until theinvitationto dothateffort, experimentalaspectsof
thePIA taskhadbeengreatlyde-emphasized.Penetration
of the ICE project into the experimentalarenahad been
shallow and,asaconsequence,experimentaldatahandling
by the PIA project was consideredof minor importance.
Thus,it wasgratifyingtoseetheconceptsconceivedalmost
entirelywith analyticaltoolsin mindbentsoamiablyto the
needsof theexperimentalenvironment.

On the otherhand,the experiencewith the HIU test has
instantlyandforcibly demonstratedthe inadequacy of the
singlevirtual addressspacein which theC++ implementa-
tion of thePIA effort mustlive. TheHIU testhasgenerated
somethingon the orderof 25 GigaBytesof experimental
data. Without lapsingto a meta-dataconcept,sucha data
loadis utterlycrushingto theC++implementationenviron-
ment.While a meta-datasolutionis possible,othergrowth
directions(to bediscussedshortly)mitigateagainstsuchan
implementation,evenasashort-termsolution.

Onejudgementthatwasderivedfrom theHIU experience
is thatthe25 GigaBytesizewasnot anunusualthing. Ex-
perimentalpropulsionefforts are expectedto often have
datavolumesof this magnitude.Further, a comprehensive
CFD investigationsaving all intermediateresultsandsteps
as envisonedby the architecturecould also producedata
volumesof this magnitude. Given the fact that the PIA
effort is to allow the researcherto browsefrom onesuch
volumeof datato the next and,ultimately, migrateinfor-
mationcontentbetweensuchrepositories,the needto ex-
pandtheimplementationinto amoreaccommodatingform
is unavoidablyclear.

It shouldbenotedthattheHIU implementationpredatedall
of theactualwork relatedto theinfusionof semanticmean-
ing into parameterobjects.This wasan expedientguided
by schedulingfactors. Becauseno informationpropaga-

tion activity wasprojectedwithin theusefullifetime of the
HIU application(indeed,informationpropagationwasonly
a distantly conceived notion at that time), this expedient
wasconsiderentirelyacceptable.

11.1.1 HIU Implementation

The datato be managedin the HIU applicationconsists
of time-seriesdata streamssampledat several thousand
samplesper secondfrom eachof some150 differentdata
sources. For the most part thesedata sourcesconsist
of high-responsepressuretransducersvariouslydistributed
betweenstaticandtotalpressuremeasurements;however, a
numberof otherinlet, engine,andfreestreamdatasources
arealsoinvolved. The datafrom an individual datapoint
is provided as two computerfiles: an interleaved, binary
datafile of all the datasourcesin round-robinorderand
anassociated,text-basedformatfile identifying theprecise
contentsof thebinaryfile.

It was immediatelydeterminedthat eachindividual data
point from the experimentwould be loadedinto a single,
private parameterconfigurationobject. To allow the re-
searcherto structureconfigurationobjectsinto an easily
comprehensiblearrangement,it was also decidedto pro-
videaplaceholdercapabilityby whichemptyconfiguration
objectscouldexist asthedirectparentof aseriesof related
datapoints.

Becauseof the essentiallystatic natureof experimental
data,the HIU applicationrequiredlittle further function-
ality. Thefollowing tasksweretheonly onesof any signif-
icance.

1. An operationto convert anemptyPacCfg objectinto
a placeholderwasdeveloped. In the conversionpro-
cess,thesubjectPacCfg objecttook on a non-empty
appearance.

2. Several operationswere developed to read a co-
ordinated format and data file pair and place the
parameter-encapsulatedinformation into an empty
PacCfgobject.

3. A CreateApplicationmemberfunction (of the Hiu-
Appl application class derived from the PacAppl
class)was developed. The main task of this mem-
ber function overridewasto constructthe identifica-
tion structureidentifyingall thedataelementsof atest
point.

The PlaceholderOperation

14

The placeholderoperationis quite simple. A protocolin-
ternal to the HIU applicationwrapperwasestablishedby
which thepresenseof a readingnumberparameter, known
internallyby thename‘RdngNo’, wasconsideredto make
a configurationnon-empty. Sincethe dataloadingopera-
tionswouldbecodedto refuseto operateif a readingnum-
ber parameterwerepresentin the target configuration,it
wasonly necessaryfor the placeholderoperationto place
anemptyreadingnumberparameterin theselectedconfig-
urationto give it anon-empty, placeholdingappearance.

As a sideeffect of the operation,the useris promptedto
provide a namefor the placeholdingconfigurationwhich
is thenset into the descriptive systemfor the target Pac-
Cfg object. This allows theplaceholdingobjectto exhibit
auseful,memory-joggingnamein all furtheroperations.

The Data Loading Operations

Threedataloadingoperationclassesare,in fact,currently
providedby theHIU application.Eachdiffersonly in the
expectedlayout of an individual binary value in the data
file. This differenceis effectedby a function override in
dataloadingoperationclassesderived from the basedata
loadingoperation.Thus,the real gutsof the dataloading
operationwaswritten only onceandwasinheritedby the
variantforms.

As would be deducedfrom the descriptionof the place-
holderoperation,the first significantstepof dataloading
is to assurethat the target configurationobject is, in fact,
empty basedupon the establishedinternal readingnum-
berparameterprotocol. With thatmattersatisfactorily re-
solved, the useris thenpromptedvia a suppliedPacGUI
objectto provide thenamesof theformatanddatafiles.

Mostof thedataloadingoperationis relatively uninspiring;
however, a few pointsof interestdo exist which illustrate
thesortof implementationfreedomwhichexistsbehindthe
PIA architecturalwall.

The first of theseinterestingpoints is the handlingof the
mismatchbetweenthedataitem namesusedin theformat
file andthecorrespondingnamesusedin theHIU applica-
tion. The experimentalists,out of whatever basisseemed
reasonableto them,usedstrictly upper-casealphanumeric
identifiers.TheHIU applicationelectedto usemixed-case
identifiersto achieve a moreestheticallypleasingappear-
ance. To bridge the gap betweenthesetwo selections,
a synonym table was addedto the developedapplication
class,HiuAppl. Whentheformatfile specifiesa dataitem
namethat is not directly found in the identificationstruc-
ture, an attemptis madeto resolve the problemthrough

applicationof thesynonym table.Sincethisprotocolis en-
tirely internal to the HIU application,the additionof the
facility to thederivedapplicationclassis entirelyappropri-
ate.

A relatedextensionwas touchedon above: the location
of data items by namein the identificationstructure. It
wasconsidereddesirablenot to codethe dataloadingop-
erationwith explicit knowledgeof the structuralizationof
the dataencapsulatedby the n-ary treeof the application
dataidentificationstructure.(To do otherwisewouldmean
thateachalterationof theidentificationtreewould have to
bematchedby a codingchangeto thedataloadingopera-
tions.) On the otherhand,the n-ary treeof the identifica-
tion structureoffersno find-by-namefacility sincethereis
no requirementthat nodesof the treehave namesunique
acrossthe tree, even though that is in fact the casein
this particularapplication.(Thedirectedgraphclassupon
which theidentificationstructureis baseddoeshave a find
capacity, but it consumesanorderedsetof namesto make
branchselectionsas eachnodeof the tree is traversed.)
Thus, it wasconsideredexpedient,thoughnot absolutely
necessary, to provide in the patriarchof the identification
grapha mapsortingidentificationobjectsby their simple
names.By consultingthis map,thedataloadingoperation
isableto locatetheidentificationobjectfor aparticulardata
item,for instancethe‘RdngNo’ parameter, directly. Again,
sincethis mappingis a matterentirely internalto theHIU
application,it is somethingappropriatelydonebehindthe
PIA architecturalwall.

Thedataloadingoperationprovidesa non-catastrophicre-
sponsein theeventthattheformatfile identifiesadataitem
that cannotbe locatedin the existing identificationstruc-
ture. Subjectto the consentof the userthroughthe pro-
vided PacGUI interactionobject,an entry is madein the
‘Found’ category of the identificationstructureusing the
namesuppliedby the format file for the dataitem. Thus,
eventhoughthewrappingof theHIU experimentis a rela-
tively staticthinginvolving theproductionof programming
languagecode,a certainmodestflexibility to adaptto new
dataitemson thefly is built in.

With regard to the actualmechanicsof dataloading, the
processingof theformatfile identifiestheorderof thedata
itemscontainedin thebinarydatafile. As eachsuchitem
is identified,its identificationobjectis located(throughthe
variousinternalmechanismsjustdiscussed)andusedtoob-
tain the fully-qualified nameby which the corresponding
parameterobjectis to besortedwithin theparametercon-
figuration.A new parameterobjectis obtained(in point of
fact,a PacParaArrDoub object),thefully-qualifiedname
associatedwith it, andit is placedin thedataconfiguration
object. A pointerto the parameterobjectis alsorecorded

15

in an orderedlist called the interleave list and automatic
changenotationis turnedoff in theparameterobjectfor the
durationof dataloading.Whenall of this is accomplished
andthe format file is exhausted,dataloadingcommences
(afterappropriateintializationof indiciesto 0) by succes-
sively obtainingthe next binary item from the binary file
andplacingit in thenext slot of thenext parameterobject
in the interleave list. As the processproceeds,the inter-
leave list is indexedmostrapidly. Eachtime theinterleave
list endis reachedits index is resetto 0 andthenext item
counterfor theparameterarraysis incremented.Whenthe
binaryfile is exhausted,dataloadingstops.

As mentionedpreviously, the actualobtainingof a single
binarydataitemis encapsulatedin aseparatememberfunc-
tionof thedataloadingoperationobject.Thebaseclassim-
plementationof thedataloadingoperationsimplyassumes
thatbinarydataitemsaredoubleitems(that is, theprima-
tive C++ datatype double) in the native form of the exe-
cuting machine. The other two derived operationclasses
differ from thebaseclassonly in overridingthedataitem
acquisitionfunction to load itemsasfloat itemsin native
formator asfloat itemsin byte-reversedformat.

Identification Extension

An adjustmentto thedataidentificationprocesswasneeded
in the HIU application. As touchedon above in the de-
scriptionof the dataloadingoperation,the needto locate
identificationobjectsdirectly by the simple nameof the
dataitem was met. This capacitywas introducedin the
HiuPid classwhich wasdirectly derivedfrom thePacPid
class.Theactualcreationof theemptymapwasaddedto
anoverrideof theCreateInitialNodememberfunctionand
additionsto themapweremadeautomaticthroughanover-
rideof theAddSuccessormemberfunction.Sinceanobject
of theHiuPid classis usedasthepatriarchof the identifi-
cationgraphandsincethe inheritedAddMemberfunction
assuresthata graphmayonly addmembersthatareof or
derivedfrom theclassof thepatriarch,it is certainthatev-
eryidentificationaddedto theHIU identificationgraphwill
necessarilymake anentryin this internally-definedmap.

CreateApplication Function

The implementationof the CreateApplicationmember
function,while beinga greatmassof tediousdrudgery, is
not particularlyremarkablegiventhediscussionabove. A
few remarksaremorethanenough.

A scriptengineis executedto build theidentificationgraph,
organizingthepotpourriof some150dataitemsprovided

by the experimentalistsinto more manageablegroupings
thoughtto beappropriateto thesituation.By usingidenti-
ficationobjectsof the HiuPid class,the internalmapping
from simplenameto associatedidentificationobjectis au-
tomaticallyconstructed.

In building identifications,it wasrecognizedthat in anex-
perimentaldatasituation,theparameterinheritancemecha-
nismof theparameterconfigurationgraphshouldbeturned
off. In thecourseof testing,dataitemsarelost dueto in-
strumentationfailuresand the like. Sometimesbad data
are simply recordedand a recordmadethat they are, in
fact, bad. Other systemssucceed(often at somepoint
down streamfrom the point of acquisition)in discarding
suchbaditems. It wasrealizedthatshouldsuchbaditems
be discardedby the time of presentationthroughthe HIU
PIA wrapper, valuesinheritedfrom previousconfigurations
whentheitem wasgoodwould not beappropriatefor dis-
play. Thus,asmallfeatureof theidentificationclassrequir-
ing thata parameteractuallyexist in the identifiedconfig-
urationwasturnedon to curethisproblem.In practice,the
actrequiredfar lesseffort thanits explanation.

A secondscriptenginebuildsthesynonymtablein theHiu-
Appl applicationobjectfor theknown text differencesbe-
tweenthe experimentalnomenclatureandthe namesused
by theHIU application.Yet a third suchengineobtainsin-
stancesof eachof theimplementedoperationsobjectsand
addsthemto theapplication.

11.1.2 HIU Work Not Completed

TheHIU implementationreportedabovewasconsideredas
only an initial plungeinto thedemonstration.Theexperi-
mentalistinvolved wantednot merely to seeand browse
the data,but to reducethat datathrougha numberof de-
fined computationsresultingin derived quantitiessuchas
thelocal Machnumber. It wasplannedto implementsuch
calculationsas additionaloperationsof the HIU applica-
tion, in accordancewith generalPIA design;however, due
to thedemiseof theentireHigh SpeedResearchProject,it
is doubtfulthatthis work will everbedone,at leastfor the
HIU application.

This missingeffort is broughtup to illustratea philosoph-
ical point of PIA design:that,to theextenttheHIU appli-
cationis differentfrom every otherapplication,suchcom-
putationsareappropriatespecializationsof theapplication
thatarewell encapsulatedbehindthePacOpoperationob-
ject architecturalwall. A point of discussionmay arise,
though,shouldonecareto assertthat the computationof
things suchas local Mach numberis, in fact, something
commonacrossmany applications.To the extent suchan

16

assertionmight be true,suchoperationswould thenprop-
erly fall beyondthePIA architecturalwall into theprovince
of thecodeconsumingtheapplication,thatbeinggenerally
a GUI. SincethePIA architecturedoesnot constrainitself
to any particularoperatingenvironment, it might be that
different,specializedGUIs couldbe developedto address
suchcommon,repeatedoperationalneeds.

Additionally, it shouldbe notedthat, even thougha par-
ticular PIA applicationmight provide suchspecializedop-
erations,the architecturecannotprevent consumingenvi-
ronmentsfrom applyingsuchinferential computationsto
datawhich is exposed.This applicationof consumingen-
vironmentoperationsbecomesmore likely, and is indeed
enabled,asmoresemanticinformationis providedby the
derivationalspecializationof parameterobjects.In theHIU
applicationall datawas placedin PacParaArrDoub pa-
rameterobjectsfor thesimplereasonthatPIA work hadnot
yet developedany moresemanticallymeaningfulclasses.
As classesidentifying the dataassomethingon the order
of fluid flow total pressure,fluid flow staticpressure,and
thelike,becomeavailable,it is likely thatspecific,special-
izedconsumingenvironmentswill beableandinclinedto
provide common,computationallyderivedquantitieseven
though the specific applicationmight also provide such
quantities.

Also, it is expectedthatmany parameterformswill provide
widely-applicablefunctionalitypeculiarto their kind. For
example,conversionsfrom experimentalvaluesobtainedin
differing flow regimes(for example,subsonic,transsonic,
supersonic,andhypersonic)to ‘true’ total pressurevalues
would bewell includedin a total pressureparameterclass
wherethey could be utilized by experimentalapplication
wrappers.

11.2 Cross-Vendor CAD Access

A wrappingapplicationwasdevelopedwhich presentsge-
ometryinformationdevelopedfrom CAD informationob-
tained through the cross-vendorCAPRI applicationpro-
gramminginterface. This wrappingis reportedin detail
in acompanionpublication[6].

Thekey achievementof thiswrapperwasto presentaPac-
ParaGeoBdry boundaryobject,alongwith its supporting
componentobjects.Thisobjectdemonstrateskey elements
of the parameterobject concept. First, by its revelation
of kind, it presentsthe semansisof a logically-complete
boundarybuilt upontheconcatenationof anumberof open
geometricfaces.Then,afterbeingrecognizedasa bound-
ary object,a numberof definedservices,amongthesethe
ability to obtainopenandclosedcrosssectionsandto com-

putetheareaof suchclosedcrosssectionsasmight beob-
tained.As will bediscussedshortly, theLargePerturbation
Inlet (LAPIN) analysiscodeusedthisobjectwith its known
servicesto obtainneededgeometricinput information.

Another aspectof the geometrywrapper was the con-
siderablebehind-the-scenesmaneuvering that went on in
achieving its function. The implementationof theCAPRI
interfaceandtheCAD toolkit underneaththatinterfacepre-
cludeda straightforwardparentto child to grandchildpro-
gramstructureto obtainthedesiredgeometricinformation.
Instead,it wasnecessaryfor thewrappingprocesslayerto
invoke a shellscript(in actuality, a DOSbatchfile), which
in turn invoked theCAD toolkit, which at thedirectionof
theshellscriptconnectedtoaDynamicLink Library (DLL)
createdto implementtheneededgeometryextractionfunc-
tionality, whichin turncreatedthegeometricparameterob-
jectsand‘piped’ themthroughto thepatriarchialwrapper
applicationlayer by serializingthemto a file from which
thatpatriarchiallayersubsequentlydeserializedthem. All
in all, aratherconvolutedapproachto informationretrieval,
andstill entirelytransparentto theconsumingcode(in this
case,thePIA testbedGUI). As did theHIU experiencein
a differentway, this demonstratesthe natureof the archi-
tecturalmechanism:provided functionality (the acquisi-
tion of geometrydata)wasobtainedthroughanapparently
straightforward interfacewhile, in fact, highly convoluted
maneuversoccurredto implementthatinterface.

11.3 Lar gePerturbation Inlet

As with thegeometrywrapper, thewrapperto theLAPIN
codeis reportedfully elsewhere[7]. This wrapperis more
representative of theexpectationsfor a typical application
wrapper. It presentsthe comprehensive data set of the
LAPIN applicationand several operations. Theseoper-
ations include the ability to load the parameterset from
sourcestraditionalfor the legacy applicationandto oper-
atethecodeandrecover its output.

Of particularinteresthereis thepartsof thewrappersup-
porting informationpropagation. Thespecializationspro-
vided by this wrapperare,asexpectedby the generalde-
signof informationpropagation,relatively narrow, consist-
ing principally of codefor the parameterharvestingstage
of theinformationpropagationact. Theimplementationis
in the form of a filter looking for parameterobjectsof the
kind PacParaGeoBdry, thevery kind thegeometrywrap-
perworksto present.

Whentheparameterharvestingoperationis complete,the
following decisiontreeis executed.

17

1. A geometricitem is selected.A geometricassembly
is selectedin preferenceto geometricboundaries.If
otherthanexactly onegeometricitem parameterhas
beenidentified,the geometrypart of the information
propagationprocessis abandoned.

Currently, thereis no discriminationappliedbetween
multiplegeomtricitems;however, mechanismsdoex-
ist by which inappropriateitems might be excluded
from considerationso thatexactly onegeometricpa-
rametersurvivestheharvestingprocess.

2. The geometricitem is sectionedin the (X:Y) plane,
which is aserviceprovidedby boththePacParaGeo-
Asmb andPacParaGeoBdry classes.

3. Heuristicsare applied to the obtainedcross-section
curvesto identify two opensectionstakento bethose
of theflow path.If two opensectionscannotbeiden-
tified by theserules,thegeometrypartof theinforma-
tion propagationprocessis abandoned.

4. Theobtainedopensectionsaresortedandorderedto
proceedradially outward (that is, in ascendingarith-
meticorderfor theY coordinatevalues)andfrom fore
to aft (that is, in ascendingarithmeticorderfor theX
coordinatevalues).

5. If the two sectionsare mirror imagesof eachother
(a serviceprovided by the PacGeoCurv classwhich
encapsulatessectioningcurves),a LAPIN type 0 in-
let formulationis generatedfrom theoutercurve and
thegeometrypartof informationpropagation is con-
cluded.

Thetype0 inlet designationis aninternalformulation
of LAPIN andmerelydesignatesanaxisymmetricin-
let with nocenterbody.

6. If thefirst sectioncurve beginson theX axis(that is,
if thefirst curve pointhasa Y coordinatevaluethatis
approximately0.0),aLAPIN type1 inlet formulation
with an axisymmetricassumptionis generatedfrom
thetwo sectioncurves.

Thetype1 inlet is, again,adesignationinternalto the
LAPIN codeindicatinganinlet with atranslatingcen-
terbody.

7. Shouldthedecisionprocessreachthis point, theonly
option (currently) left is that of a LAPIN type 1 in-
let with a two-dimensional(thealternative to axisym-
metric) assumption.Cowl andcenterbodygeometry
is generatedfrom thetwo sectioncurves. Duct width
geometryis computedto result in cross-sectionalar-
easmatchingthoseobtainedfrom thegeometricitem
parameterobject.(Thecomputationof cross-sectional
areais anotherserviceof thePacParaGeoAsmband
PacParaGeoBdry classes.)

Figure11.1:GUI OpeningApplicationQuery

The interplayof parameterwith consumeris illustratedin
the above process.The sectioningof boundariesand the
computationof cross-sectionalareasarebothtasksthatare
consideredto berelevantandcommonacrossa wide vari-
ety of consumersof objectsof thePacParaGeoAsmband
PacParaGeoBdry classes.Thus,oncethe LAPIN propa-
gation codeidentifiesan objectof that class,it is assured
not only of the kind of information available, but of the
servicesavailablefor the usefultransformationof that in-
formation.

11.4 TestbedGUI

Although a GUI is not consideredto be a productof the
overall project, sucha tool is neverthelessnecessaryfor
testingpurposes.Indeed,a GUI is themostexpedientway
to seethattheconceptsdescribedabovedo, in fact,work.

Thefirst demonstrationof thearchitectureis shown in Fig-
ure 11.1. This is a screencaptureof the applicationse-
lectiondialogbox implementedby theGUI. Thedialogal-
lowstheuserto selectoneof theavailableapplicationtypes
throughamutually-exclusive radiobuttoninteraction.

Theremarkablethingabouttheapplicationselectiondialog
is thatit is generatedon-the-flyby theGUI, ratherthanby a
staticcodingof thedialog.At thetime of dialoginitializa-
tion, a scanis doneof all PIA classes,isolatingthosethat
arederivedfrom thetypePacAppl. (TheclassPacAppl it-
self is excludedfrom this set.)A radiobuttonis generated
for eachsuchidentifiedapplicationclass,drawing thename
text from thesupportingclassinformation.Thus,thefigure
shows that,at thetime thisdialogwascaptured,two appli-
cationsweresupported:theHSRInlet Unstart(HiuAppl)
applicationandtheLAPIN (LapAppl) application.

In all of the GUI, there is only one spot in which
application-specificcodingexists: in theimplementationof
thedocumentclassa seriesof includestatementstransmit
commentsto thelinker thatcauseit to incorporatetheclass
codeof the variousPIA library components,even though
thereis noreferenceto thoseclassesand,thus,noneedap-

18

parentto thelinker for thatsupportingcode.It is expected
thatoncethemigrationof thearchitectureto thedistributed
object environmentof CORBA is complete,the needto
forcibly includecodebeyond the generic,well-known li-
brary levelswill ceaseto exist, allowing new applications
to beintroducedto thesystemwithout thenecessityof re-
compilingeveryconsumingtool.

Figure 11.2 illustratesnearly all the rest of the features
of the architectureas exercisedby the testbedGUI. The
window labeledPacAppl1:1 views a LAPIN application
choosenfrom anapplicationselectiondialogin thecourse
of GUI startup.Thewindow labeledPacAppl1:2 views a
secondapplication,in thiscaseanHIU application,thathas
beencreatedasasuccessorto theLAPIN applicationin the
applicationgraph.

A window viewing anapplicationlists from top to bottom

1. The parameteridentification tree (which is not ex-
pandedin eitherwindow of the figure for reasonsof
space),

2. Theparameterconfigurationgraph,

3. Theoperationtree,

4. The applicationgraphpredecessorlist (exceptin the
caseof thePacAppl1:1 window which views theini-
tial nodeof thegraphwhich,by definition,hasnopre-
decessors),and

5. Theapplicationgraphsuccessorlist.

Comparingthe differencesbetweenthe two windows, in
particular the different operationslists, shows the self-
revealing natureof applicationswithin the architecture.
The PacAppl1:1 window lists the variousLAPIN opera-
tions; the creationof LAPIN parameters,the loading of
LAPIN parametersfrom traditionalFortrannamelistinput,
the runningof LAPIN, andthe validationof the parame-
ter setasinput to a potentialLAPIN run. Meanwhile,the
PacAppl1:2 HIU window lists an entirely differentsetof
operations;theconversionof aparameterconfigurationto a
placeholderandseveraldifferentdata-loadingoperations,
all as previously discussed.Thesedifferencesare all as
a direct result of the GUI inquiring of the applicationas
to the application’s contentandgeneratingan appropriate
viewing window in response.

The two viewing windows alsoreveal the connectionbe-
tweenthetwo applicationsasparticipantsin anapplication
graph. ThePacAppl1:1 window views the initial nodeof

theapplicationgraph,aswitnessedby theabsenseof aPre-
decessorApplicationselementin its view. (An application
is madean initial nodeof an applicationgraphasan im-
plicit part of theOnNewDocumentprocess.)TheSucces-
sor Applicationslist of that view shows the HIU applica-
tion viewed by the PacAppl1:2 window as its successor.
The HIU application,in turn, lists the LAPIN application
of the PacAppl1:1 window asits predecessor. The appli-
cationgraphcanbe, of course,expandedto the practical
limits of thehostmachine;it is only for reasonsof spacein
thefigurethatjust two applicationsin a directparentchild
relationshipareshown.

The operation of the information propagation process
throughouttheapplicationgraphis alsoillustratedby Fig-
ure11.2.Theparameterconfigurationgraphof theLAPIN
applicationviewed throughthe PacAppl1:1 window has
beenexpandedbeyond is default single-patriarchform to
includetwo child configurationsanda grandchildconfig-
uration attachedto the secondchild. By the act of in-
formation propagation citing the root parameterconfigu-
ration of the LAPIN application(effectedby first select-
ing therootparameterconfigurationof thatapplicationand
thendouble-clickingthe applicationelementof the view-
ing window), that parameterconfigurationgraphis repli-
catedin the successorHIU application. This is further
confirmedby the fact that the default parameterconfigu-
ration object namesgeneratedin the LAPIN application
as the configurationgraph was expanded(for example,
LapCfg:00F939D0)are, in fact, replicatedin the config-
urationgraphof theHIU application.This is preciselyas
expectedby theactof informationpropagationasa result
of its effort to keepparameterconfigurationsynchronized
betweencooperatingapplications.

12 FutureDirections

At thispoint, theroadaheadfor thePIA projectseemsrel-
atively clear. Thekey technologyof self-revelationandits
ability to enablecommontools, information propagation
throughoutan applicationgraph,andthe like canbe con-
sideredwell demonstrated.Furtherwork now mustcenter
on two areas:makingtheapplicationarchitecturepractica-
ble by moving it to a distributedobjectenvironment,and
filling in themany semanticgapssoasto havea fully pop-
ulatedsetof informationforms.

12.1 Distributed Object Implementation

As notedin thediscussionof theHIU application,thede-
mandsof realapplicationseasilyoverwhelmthecapacities
of a singlevirtual addressspaceimplementationof theap-

19

Figure11.2:Displayof Two IndependentApplicationsConnectedin a Graph

20

plicationarchitecture.Thereis nopossibilityof accommo-
datingmultiple applicationsin a cooperative graphwhen
evena singleapplicationis beyondtherangeof reason.

For this reasonof practicalityalone,it is necessaryto mi-
gratethe applicationarchitectureto a distributed,served-
object architecture. This work has already begun uti-
lizing the CommonObject RequestBroker Architecture
(CORBA) technologystandardizedby theObjectManage-
mentGroup(OMG, http://www.omg.org).

12.1.1 Distributed Object Fundamentals

Thebasicideaof thedistributedobjectis to convinceclient
codethat it is usingan objectwithin its own operational
spacewhile, in fact,theactualobjectexistssomewherere-
motefrom theclient. Frequently, theideaof remotemeans
thattheobjectexistsonanothermachineaccessedacrossa
network, notuncommonlythatnetwork beingtheInternet.

To understandthe underlyingmechanismsof distributed
objectsasimplementedby theCORBA standard,consider
the conceptualdiagrampresentedin Figure 12.1. Con-
sumingcodeat the upper left haspointersor references
to what are, in fact, client stubsof the distributedobjects
it believesit is working with. Whena methodis invoked
on a client stub, insteadof performingthe requestedop-
eration, the methodinvokation along with its arguments
are passedthroughto the Object RequestBroker (ORB)
residentin the consumingcodewhich marshalsthe infor-
mationinto a transportablemessage.Themessageis then
routed,frequentlyovertheInternet,to aservingORB.That
ORB cooperateswith a objectadapter(in earlierformula-
tions a BasicObjectAdapteror BOA and,morerecently,
a PortableObjectAdapteror POA) to demarshalthemes-
sageandtransmitthe methodinvokationto an implemen-
tationskeletonobject,which in many cases,simply passes
theinvokationon to afinal, implementingobject.

When the remote method operation is complete, the
processis simply reversed. The results of the opera-
tion are passedback through the skeleton object to the
[BOA/POA]/ORB combination,which marshalstheminto
a respondingmessageandroutesthatmessagebackto the
ORB servingtheclient. Theresponseis demarshaledand
passedbackthroughthe client stubobjectsto the waiting
consumercode. Exceptfor the generallylongerresponse
times, the consumingcodeis unaware that the operation
did notoccurwithin its locally heldobject.

12.1.2 Distributed Object Advantages

This distributedobjecttechnologybringswith it a number
of key advances.

1. The CORBA standardoffers a particularly relevant
featurecalledobject serviceactivation. Simply put,
aservedobjectneednotactively exist atall times,but
may insteadresidein a dormant(or etherealized in
CORBA terminology)stateon somesecondarystor-
agedevice. Shoulda methodinvokationcomein for
such an object, a protocol exists which allows the
server to first re-create(or incarnate) thatobjectfrom
its dormantform beforemethoddelivery occurs. At
somelater time, shouldtheservedobjectbecomein-
active, it maybeplacedbackin its dormantstate.

Thekey contributionhereis thatnotall theobjectsof a
givenapplicationneedto beactive within theaddress
spaceof a server at any given time. An application
suchasHIU maywell haveterabytesof data,but only
thatdataactively in useatany givenmomentneedsto
beservedby suchaserver.

2. DistributedobjecttechnologyallowsPIA applications
to be served to consumingtools (and otherapplica-
tions) by multiple servingmachines.Thus, it is not
necessaryto getall of thedataandimplementingcode
of all thewrappedapplicationsontoonephysicalma-
chine.

This ability to serve different wrappedapplications
from differentmachinesallows thosemachinesto be
locatedwith the groupssupportingthe applications.
For example,experimentaldataapplicationscan be
served from machinessupportedby thedataacquisi-
tion groupwhile aconsuminganalysisapplicationcan
beservedbyamachineprovidedby thegroupgenerat-
ingandsupportingthatapplication.Furthermore,both
suchapplicationscanbe usedby a consumingclient
widely separatedfrom bothdistributedobjectservers.

3. Distributedobjecttechnologyseparatesthe issuesof
functionality from implementation. Thus, the ser-
vicesof a PIA-wrappedapplicationmay be supplied
throughdistributedobjectswithout exposingthe im-
plementationof thoseservices.

This featureis of particular interest to commercial
providers of applicationswho may wish to sell the
servicesof a particularapplicationwithout revealing
the proprietarymethodsby which thoseservicesare
achieved. The PIA technologyfurther facilitatesthis
by allowing general-purposetoolsof potentiallywide
availability to interact with such provided services,
thuseliminatingtheneedfor a customaccesstoolkit
for everysuchofferedproduct.

21

ü{ý~þºÿ������}þ�� ü{ý	��

ü����
tþ�� ÿ������ ü����
tþ�� ÿ������

��� ý	��
 �
�
��	��
tÿ��
������
����

��� ý	��
 �
�
��	��
tÿ��
������
����

������
����������� ���
 �

!���
��
��Eý~þ !���
��
��Eý~þ

" �� ��
���
tþ��������}ý~þ " �� ��
���
tþ��������}ý~þ

� ý	�����}þ���#�$ � �tþºÿ�
ý � ��%���&	
 �

� � ������
tþ���'(� � ÿ�)�����}þ�� � � ������
tþ���'(� � ÿ�)�����}þ��

Figure12.1:CORBA DistributedObjectTechnology

12.1.3 Distributed Object Difficulties

The migration to a distributed objectenvironment,while
necessaryandadvantageousoverall,doesbringwith it cer-
taindifficulties.

1. Distributed objects,being exposedupon the net by
well-known services,areaccessibleby, literally, the
entire communityof the net. Mechanismsmust be
implementedto limit the accessibilityof distributed
objectsto thosethatshouldhaveaccess.

2. Having presumablyeliminatedthosewho shouldnot
accessdistributedobjectsof an PIA implementation,
it muststill be recognizedthat the remainingacces-
sor set hasmore than one element. It is, thus, still
necessaryto arrangemechanismsto assurethe in-
tegrity of PIA structuralcomponentsevenwhenquasi-
simultaneouslyaccessedby membersof thatconsum-
ing set[8].

12.1.4 Distributed Object Persistence

In theCORBA standard,theconnectionbetweenclientand
objectdoesnotdefinetheperiodof existanceof theobject.
An objectmayexist prior to a client connectingto it andit

mayexist aftertheclienthasfulfilled its desiresandexited.
Indeed,theCORBA standardprovidesno specificationfor
eitherthebeginningor endingof aservedobject.Thestan-
dardleavessuchissuesto thediscretionof theapplication.

The PIA projectprovidesanswersfor the questionof the
beginning and ending of objects. The class(or, in the
CORBA nomenclature,the interface)informationsupport
systemprovidesa CreateInterfacemethodwhich createsa
new instanceof thesupportedclass.To endsucha created
object,everyclassimplementedby thePIA projectinherits
from the baseclassa SetDefunctmethodwhich declares
theterminationof thepresentinginstance.

Betweenbeginningandending,theCORBA objectsof the
PIA implementationexist without regard to the comings
andgoingsof clients. As indicatedpreviously, whensuch
an objectappearsto be idle, the server programarranges
to remove theobjectfrom active serviceandsavesits con-
tent to persistentstoragethroughthe serializationmecha-
nismsoriginatedin theC++ implementationwork. When
amethodinvokationonsuchanobjectarrivesatsomelater
time, theobjectis re-createdandits contentsrestoredby a
deserializationoperationbeforemethoddeliveryproceeds.

22

12.2 Populating the SemanticSet

The mechanismof self-revelation of kind dependsupon
exacting definition of the semanticnatureof a particular
object. In the work to datethis hasbeenrelatively easy
sincethedefinitionsinvolvedstructuralcomponents;appli-
cationsin a genericsense,parameteridentifications,con-
figurations,and the like. Even the geometricparameter
kinds weredefinedwith comparitive easesincethe issue
of geometryis relatively well settled.

The usability of the PIA technologyis closely relatedto
thesupplyof ‘building blocks’ availableto theapplication
wrapper, particularlyto thesupplyof semanticallydefined
parameterclassesfrom which to choose.While the cod-
ing of parametersis oftenquitetrivial, theneedfor experts
in thevariousdisciplineswho canformulateclear, broadly
applicabledefinitionsof particularparameterformscannot
beoveremphasized.

13 Summary

An abstract,highly flexible, object-orientedapplication
architecturehasbeendefined. The architecturehasbeen
implementedin C++ and real applicationshave been
wrapped according to that architecture. Applications
wrappedin this mannerhave beenconnectedinto directed
applicationgraphsand the automaticpropagation of in-
formation from sourceapplicationto consumerhasbeen
demonstrated.

References

[1] James Douglas Stegeman, Richard A. Blech,
TheresaLouiseBenyo,andWilliam HenryJones.Inte-
gratedCFDandExperiments(ICE): ProjectSummary.
Technical memorandum NASA/TM-2001-210610,
National Aeronautics and Space Administration,
Lewis ResearchCenter, 21000 Brookpark Road,
Cleveland,OH 44135,December2001.

[2] The AmericanSocietyof MechanicalEngineers. In-
tegrated CFD and ExperimentsReal-TimeData Ac-
quisitionDevelopment, numberASME 93-GT-97,345
E. 47th St., New York, N.Y. 10017,May 1993. Pre-
sentedattheInternationalGasTurbineandAeroengine
CongressandExposition;Cincinnati,Ohio.

[3] William Henry Jones. Project Integration Architec-
ture:Formulationof SemanticParameters.Draft paper
availableoncentralPIA website,January2000.

[4] William HenryJones.ProjectIntegrationArchitecture:
Formulationof Dimensionalityin SemanticParame-
ters. Draft paperavailable on centralPIA web site,
March2000.

[5] William HenryJones.ProjectIntegrationArchitecture:
Inter-Application Propagation of Information. Draft
paperavailable on central PIA web site, December
1999.

[6] American Institue of Aeronauticsand Astronatics.
Project Integration Architecture (PIA) and Computa-
tional AnalysisProgrammingInterface (CAPRI) for
AccesingGeometryData from CAD Files, number
2002-0750.AerospaceSciencesMeetingandExhibit,
Reno,NV.

[7] William HenryJones.ProjectIntegrationArchitecture:
Wrapping of the Large PerturbationInlet (LAPIN)
AnalysisCode. Draft paperavailableon centralPIA
website,March2001.

[8] William Henry Jones. Project Integration Architec-
ture: DistributedLock Management,DeadlockDetec-
tion, andSetIteration.Draft paperavailableoncentral
PIA website,April 1999.

23

